

FRAUNHOFER RESEARCH INSTITUTION FOR ADDITIVE MANUFACTURING TECHNOLOGIES IAPT

ADDITIVE FATIGUE STUDY

INFLUENCE OF DIFFERENT SURFACE FINISHING METHODS ON MECHANICAL PROPERTIES FOR METAL AM COMPONENTS

ADDITIVE FATIGUE STUDY

PROBLEM STATEMENT

Current Situation

Applied stress [MPa]

- How does each surface finishing method influence the mechanical properties of my AM components?
- Which mechanical properties can be expected after post-processing of AM components?

Solution

A study about the influence of post-processing methods on mechanical properties

- Objective comparison of different finishing methods
- No expertise needed
- Quick decision help in assessing the suitability and impact of various finishing methods on mechanical properties

CONTENT AND STRUCTURE OF THE STUDY

Materials Investigated	Benchmark Criteria	Surface Finishing
Ti-6AI-4V	Fatigue strength	Methods Investigated
Inconel 718	Tensile strength	
	Elongation at break	Machining with undefined cutting edge
	Dimensional accuracy	Abrasive Blasting
	Surface roughness	Vibratory Finishing
Our Approach to Fatigue Testing		Chemical ablation
	Method A	Chemical Polishing

Method B

Method C

Cycles to fail [-]

Milled

surface

As-built surface

Isotropic Superfinishing

Electrochemical ablation
Electrochemical Polishing
Metal DryLyte

Finishing method combination

Vibratory Finishing + Metal DryLyte

Additional surface conditions for reference
As-built surface

Milled surface

SECURE THE STUDY RESULTS NOW!

Fictional data - only for visualization

Contact us: surface.finishing@iapt.fraunhofer.de